Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Zhi-Min Jin, ${ }^{\text {a }}$ * Hai-Bin Wang, ${ }^{\text {b }}$ Yi-Zhi Li, ${ }^{\text {c }}$ Mei-Chao Li, ${ }^{\text {b }}$ Mao-Lin Hu ${ }^{\text {d }}$ and Liang Shen ${ }^{e}$
${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\mathbf{b}}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {c }}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China, dDepartNormal College, Wenzhou, Zhejiang 325003, People's Republic of China, and ${ }^{\mathbf{e}}$ Department of Chemistry, Hangzhou Teacher College, Hangzhou 310012, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.040$
$w R$ factor $=0.095$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Dichloroacetyl-DL-valine-water (1/0.41)

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3} \cdot 0.41 \mathrm{H}_{2} \mathrm{O}$, the D and L forms are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form centrosymmetric dimers. These hydrogen bonds form rings of graph-set motif $R_{2}^{2}(14), R_{2}^{2}(10)$ and $R_{2}^{1}(6)$. The dimers are linked together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form two-dimensional molecular networks.

Comment

Valine is an important amino acid and the structures of l-valine (Torii \& Iitaka, 1970), dl-Valine (Mallikarjunan \& Rao, 1969) L-valine hydrochloride (Ando et al., 1967), Dl-valine hydrochloride (Blasio et al., 1977) and l-valine L-valinium perchlorate monohydrate (Pandiarajan et al., 2001) have been reported. The structures of the model peptides N-acetyl-D,L-valine (Carroll et al., 1990) and N-carboxy-Lvaline anhydride (Kanazawa et al., 1984) have also been reported. We report here the structure of the title compound, (I), a valine derivative.

The $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$ torsion angle, which describes the planarity of the peptide unit, is $176.95(17)^{\circ}$. The torsion angle $\varphi_{1}(\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2)$ is $-128.83(19)^{\circ}$. The torsion angles around the $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 3-\mathrm{C} 5$ bonds (Fig. 1 and Table 1) are comparable to those observed for DL-valine hydrochloride (Blasio et al., 1977). In the crystal structure, the enantiomers are linked by centrosymmetric $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$ and $\mathrm{C} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{i}}$ hydrogen bonds (symmetry codes as in Table 2) to form dimers. In a dimer, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form rings of graph-set motif (Etter, 1990) $R_{2}^{2}(10)$ and $R_{2}^{2}(14)$, respectively. In addition, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds together form a ring of graphset motif $R_{2}^{1}(6)$ (Fig. 2). The dimers are linked together by $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{1 i}$ hydrogen bonds to form two-dimensional molecular networks parallel to the $b c$ plane.

Experimental

L-valine and dichloroacetic acid in 1:1 molar ratio were mixed together and kept at 443 K for 5 h . Racemization occurred in the synthesis. The resulting solution was kept at room temperature overnight to obtain the title compound. Single crystals suitable for an X-ray diffraction study were obtained by recrystallizing the title compound from 70\% aqueous ethanol.

Received 12 May 2003

Accepted 20 June 2003
Online 30 June 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3} \cdot 0.41 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=235.45$
Monoclinic, $P 2_{1} / c$
$a=9.298$ (2) \AA
$b=9.011$ (1) \AA
$c=13.990$ (2) \AA
$\beta=108.07(1)^{\circ}$
$V=1114.3(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART Apex CCD areadetector diffactometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.90, T_{\text {max }}=0.91$
6265 measured reflections

$$
\begin{aligned}
& D_{x}=1.403 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 785 \\
& \quad \text { reflections } \\
& \theta=2.6-19.5^{\circ} \\
& \mu=0.57 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.28 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

2417 independent reflections 1788 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0388 P)^{2}\right. \\
& \quad+0.1217 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.16 \mathrm{e}^{-3} .
$$

Figure 2
A view of the hydrogen-bonded network parallel to the $b c$ plane. Solvent water molecules with partial occupancy have been omitted.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{O}^{\text {i }}$		0.86	2.03	$2.876(2)$
O2-H2 $^{\mathrm{i}} \mathrm{O}^{\mathrm{i}}$	0.82	1.85	169	
C1-H1 O^{i}	0.98	2.57	$3.667(2)$	178
C3-H3 (3)	139			

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$.

A solvent water O atom with partial occupancy was found in the asymmetric unit. The occupancy of this atom was initially refined and later fixed at 0.41 (1) (the standard uncertainty for the refined value was 0.4113). This atom lies at a distance of 2.239 (5) \AA from $\mathrm{O} 2\left(1-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$. The positional and isotropic displacement parameters of solvent water H atoms were refined $[\mathrm{O}-\mathrm{H}=0.84$ (5) and $0.93(7) \AA$ and $U_{\text {iso }}(\mathrm{H})=0.08$ (2) and $0.034(14) \AA^{2}$, respectively]. All other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.82-0.98 \AA$, with isotropic displacement parameters 1.2 to 1.5 times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Ando, O., Ashida, T., Sasada, Y. \& Kukudo, M. (1967). Acta Cryst. 23, 172-173. Blasio, B. D., Napolitano, G. \& Pedone, C. (1977). Acta Cryst. B33, 542-545. Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Carroll, P. J., Stewart, P. L. \& Opella, S. J. (1990). Acta Cryst. C46, 243-246. Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Kanazawa, H., Ohashi, Y. \& Sasada, Y. (1984). Acta Cryst. C40, 1094-1096. Mallikarjunan, M. \& Rao, S. T. (1969). Acta Cryst. B25, 296-303.
Pandiarajan, S., Sridhar, B. \& Rajaram, R. K. (2001). Acta Cryst. E57, o466o468.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Torii, K. \& Iitaka, Y. (1970). Acta Cryst. B26, 1317-1326.

